Kraftwerke der Zelle: Neue Details zu Mitochondrien

Kraftwerke der Zelle weiter ausspioniert: Erst-Autorin und Senior-Autoren der Publikation (v.l.) Dr. Ricarda Richter-Dennerlein, Prof. Dr. Peter Rehling und Dr. Sven Dennerlein betrachten Proteinkomplexe auf einem Röntgenfilm. © umg / spförtner

Kraftwerke der Zelle weiter ausspioniert: Erst-Autorin und Senior-Autoren der Publikation (v.l.) Dr. Ricarda Richter-Dennerlein, Prof. Dr. Peter Rehling und Dr. Sven Dennerlein betrachten Proteinkomplexe auf einem Röntgenfilm. © umg / spförtner

Forscher haben die Kraftwerke der Zelle – die Mitochondrien – weiter ausspioniert und entdeckten, wie zwei unabhängige Systeme der Proteinbildung miteinander verknüpft sind.

Wenn die Kraftwerke der Zelle – Mitochondrien – mit Störfällen konfrontiert sind, bringt das die Energie-Produktion aus dem Gleichgewicht, was auch krank machen kann. Dementsprechend können schwere Erkrankungen des Nervensystems und des Herzens entstehend, die häufig sogar tödlich verlaufen.



Göttinger Grundlagenforscher um Prof. Dr. Peter Rehling, Direktor des Instituts für Zellbiochemie an der Universitätsmedizin Göttingen (UMG), untersuchen deshalb unter anderem, wie genau die Kraftwerke der Zelle zusammengebaut werden.

Quelle: umg / rehling
Fluoreszenz-mikroskopische Aufnahme eines Mitochondrien-Netzwerkes (grün) und des Zellkerns (blau) in einer menschlichen Zelle. © umg / rehling

Ihre neuesten Erkenntnisse klären bisher unbekannte Details zum Zusammenbau der Proteine zu der zentralen Atmungskette. Sie könnten helfen, Defekte oder Störungen im Maschinenpark der Energie-Kraftwerke der Zelle besser zu erkennen oder vielleicht sogar zu reparieren. Der Europäische Forschungsrat (ERC) fördert die Göttinger Forschung über Kraftwerke der Zelle seit 2014 durch einen ERC Advanced Investigator Grant. Die jüngsten Ergebnisse sind veröffentlicht in der renommierten wissenschaftlichen Zeitschrift „Cell“.

Kraftwerke der Zelle – Mitochondrien – Proteine

Die Kraftwerke der Zelle, die Mitochondrien, wandeln Energie aus der Nahrung in eine allgemeingültige Energiewährung, das ATP, um. Für die Herstellung von ATP besitzt jede Zelle Miniaturkraftwerke, also einen hochentwickelten Maschinenpark. Die dafür notwendige Maschinerie wird „Atmungskette“ genannt, weil der Prozess der ATP-Produktion zirka 95 Prozent des Sauerstoffs benötigt, den wir täglich einatmen.



Die Atmungskette ist aus einer großen Vielzahl von einzelnen Proteinen (Eiweißmolekülen) zusammengebaut. Mitochondrien haben eigenes Erbgut, das Informationen für den Zusammenbau einiger Proteine der Atmungskette enthält. „Die überwiegende Zahl von Proteinen, die in der Atmungskette ihren Dienst tun, wird allerdings außerhalb der Mitochondrien synthetisiert und von Genen, die sich in unserem Zellkern befinden, kodiert. Sie müssen, nachdem sie hergestellt wurden, vom Zellraum in die Mitochondrien transportiert werden und dort die Proteine finden, die in den Mitochondrien selbst gemacht werden“, sagt die Erst-Autorin der Publikation, Dr. Ricarda Richter-Dennerlein vom Institut für Zellbiochemie der UMG.

 

Wie viel Proteine Mitochondrien produzieren müssen

Woher wissen die Mitochondrien eigentlich, wie viel Protein sie selbst herstellen müssen, um keinen Überschuss zu produzieren? Wie gelingt es den Mitochondrien, eine ausbalancierte Menge an Proteinen zu produzieren, die dann mit den Proteinen, die von außen kommen, zum Maschinenpark zusammengebaut werden zu können?

Die Wissenschaftler am Institut für Zellbiochemie der UMG haben herausgefunden, dass Ribosomen in den Mitochondrien Proteine nur teilweise synthetisieren und dann eine Pause einlegen. Erst wenn Proteine, die von außerhalb der Mitochondrien stammen, in die Mitochondrien importiert werden, fangen die Ribosomen wieder an zu arbeiten und stellen das vollständige Protein in den Mitochondrien her. Auf diese Weise kann sichergestellt werden, dass ein Protein, das in den Mitochondrien entsteht, nur dann wirklich hergestellt wird, wenn sein Partner, der von außen in die Mitochondrien hinein transportiert wird, vorhanden ist.

Die Untersuchungen der Arbeitsgruppe erklären damit erstmals, wie zwei unabhängige Systeme der Proteinbildung, eines außerhalb der Mitochondrien und eines innerhalb der Mitochondrien, miteinander verknüpft sind. Diese Untersuchungen sind von besonderer Bedeutung, da Defekte bei der Ausbildung der Atmungskette zu schweren und oft tödlich verlaufenden Erkrankungen des Nervensystems und des Herzens führen können.



Originalpublikation:

Ricarda Richter-Dennerlein, Silke Oeljeklaus, Isotta Lorenzi, Christin Ronsör, Bettina Bareth, Alexander Benjamin Schendzielorz, Cong Wang, Bettina Warscheid, Peter Rehling, Sven Dennerlein. Mitochondrial Protein Synthesis Adapts to Influx of Nuclear-Encoded Protein. CELL, Volume 167, Issue 2, p471–483.e10, 6 October 2016. DOI: http://dx.doi.org/10.1016/j.cell.2016.09.003

Die mobile Version verlassen