Freitag, April 26, 2024

Wie der GPCR-Arrestin-Komplex aktiviert wird

Mit Hilfe von Computersimulationen und Fluoreszenzspektroskopie wurde untersucht, wie der GPCR-Arrestin-Komplex aktiviert wird.

Das grundlegende Verständnis komplexer Prozesse einer Körperzelle spiele eine wichtige Rolle, ob neu-entwickelte Arzneistoffe wirksam sind. Us-amerikanische und Deutsche Wissenschaftler (der kalifornischen Stanford University und der Charité – Universitätsmedizin Berlin) haben nun den GPCR-Arrestin-Komplex unter die Lupe genommen und einen wichtigen molekularen Schritt der zellulären Signalweitergabe entschlüsselt.



 

Wechselwirkung GPCR-Arrestin

Signale werden innerhalb des Körpers oft mit Hilfe von Botenstoffen übermittelt. Diese Moleküle binden an spezifische Andockstellen auf der Oberfläche der Zielzelle und lösen eine Reihe von Folgereaktionen im Inneren der Zelle aus. Die größte Familie von Andockstellen sind die sogenannten G-Protein-gekoppelten Rezeptoren (GPCR). Diese GPCRs sind nicht nur an der Verarbeitung von Sinnesreizen beteiligt, sie sind auch ein wichtiges Ziel für die medikamentöse Behandlung von Krankheiten wie Asthma, Schizophrenie, Bluthochdruck und Krebs.

30 bis 40 Prozent aller derzeit verschriebenen Medikamente gegen diese Erkrankungen zielen auf die GPCRs ab. Die Funktionsweise der GPCRs in der Zelle hängt davon ab, wie die Rezeptoren mit verschiedenen Proteinen in der Zelle wechselwirken. Eines dieser Proteine ist das Arrestin. Es steuert, welche Signalwege durch verschiedene Rezeptoren und ihre verschiedenen Bindungspartner aktiviert werden.

Ziel der aktuellen Studie war es, den molekularen Mechanismus der Aktivierung des GPCR-Arrestin-Komplexes aufzuklären. Hierzu wurde mit Hilfe von Computersimulationen und Fluoreszenzspektroskopie die Veränderungen in der molekularen Struktur des an den Rezeptor gebundenen Arrestins überwacht. Die Ergebnisse erlauben erstmals einen detaillierten Einblick in die molekularen Interaktionen von GPCR und Arrestin während der Signalweitergabe in der Zelle.

Dr. Martha Sommer vom Institut für Medizinische Physik und Biophysik der Charité über die Bedeutung ihrer Forschung für die Grundlagenmedizin: „Je besser wir verstehen, wie diese Rezeptoren mit den Bindungspartnern im Inneren der Zelle interagieren, desto besser sind wir in der Lage, Medikamente zu entwickeln, die eine gewünschte therapeutische Wirkung haben, aber unerwünschte und schädliche Nebenwirkungen vermeiden.“ Nachfolgende Studien sollen den Blick auf die Vorgänge zwischen GPCR und Arrestin weiter schärfen, um die Entwicklung von Arzneimitteln zu ermöglichen, die spezifisch auf diesen Signalweg einwirken.




Literatur:

Latorraca NR, et al. Molecular mechanism of GPCR-mediated arrestin activation. Nature. 2018 May 2. DOI: 10.1038/s41586-018-0077-3.

Related Articles

Aktuell

Vitamin D-Mangel bei chronischer Niereninsuffizienz

Die Behandlung von Vitamin D-Mangel spielt bei Patienten mit chronischer Niereninsuffizienz eine bedeutende Rolle. Vitamin D-Mangel ist eine häufige Komplikation bei Patienten mit chronischer Niereninsuffizienz,...
- Advertisement -

Latest Articles

Hülsenfrüchte liefern hochwertiges Eiweiß und qualitativ gute Fette

Hülsenfrüchte sind gesunde Energielieferanten und haben mit ihrem hochwertigen Eiweiß und guten Fetten einen großen Nutzen für die Ernährung. Hülsenfrüchte, einschließlich Linsen, Erbsen und Bohnen,...

Resilienz: die Kunst, psychische Widerstandsfähigkeit zu stärken

Resilienz bezeichnet die psychische Widerstandsfähigkeit, die uns auch ermöglicht, aus Krisen zu lernen und daraus gestärkt hervorzugehen. In einer idealen Welt wären wir vor Schicksalsschlägen,...

Zirkulierende Tumorzellen beim kleinzelligen Lungenkarzinom kultivieren

Wichtig zur Klärung der Metastasierung: Forscher gelang es, zirkulierende Tumorzellen beim kleinzelligen Lungenkarzinom zu kultivieren. Die Forschung zum kleinzelligen Lungenkarzinom (SCLC), einer besonders aggressiven Form...