Freitag, März 29, 2024

Gentransfer zwischen Bakterien

Bakterien können Erbgut untereinander austauschen. Der horizontale Gentransfer stellt ein großes Problem bei Resistenzentwicklung bei Bakterien dar.

Obwohl Bakterien sich asexuell fortpflanzen, können sie auch Erbgut untereinander austauschen. Der sogenannte horizontale Gentransfer stellt ein großes Problem bei Resistenzentwicklung bei Bakterien dar. Mit ihm können resistente Bakterien ihre Fähigkeit, Antibiotika zu überleben, an andere Bakterien weitergeben. Kölner Forschern ist es gelungen, einen Teil des Mechanismus aufzuklären, der den Gen-Transfer zwischen Bakterien erst möglich macht. Sie entdeckten einen molekularen Motor, der wie eine Ratsche funktioniert und erstaunlich hohe Kräfte entwickelt.

Die Forschungen wurden von Christof Hepp, einem Doktoranden der Forschergruppe von Professorin Dr. Berenike Maier vom Institut für Theoretische Physik, geleitet. Der Aufsatz „Kinetics of DNA uptake during transformation provide evidence for a translocation ratchet mechanism” ist nun in der renommierten Zeitschrift Proceedings of the National Academy of Sciences (PNAS) erschienen.

Bei höheren Organismen wie Pflanzen und Tieren entsteht genetische Vielfalt durch sexuelle Reproduktion. Ganze Bereiche des Erbguts können so neu kombiniert werden und zur Anpassung an geänderte Umweltbedingungen beitragen. Aber insbesondere Bakterien sind Meister der Anpassung an neue Lebensumstände, wie Mediziner feststellen müssen, die gegen Antibiotika-resistente Keime in Krankenhäusern kämpfen. Obwohl sie sich nur durch Zellteilung vermehren und keine sexuelle Reproduktion betreiben, haben Bakterien einen Weg gefunden ihr Erbgut zu vermischen, den sogenannten horizontalen Gentransfer.

Die einfachste Art des horizontalen Gentransfers ist die Transformation. Dabei nehmen Bakterien DNA aus ihrer Umgebung auf und integrieren sie ganz oder teilweise in ihr eigenes Erbgut. So kann beispielsweise ein Gen, das Resistenz gegen ein Antibiotikum vermittelt, auf ein Bakterium übertragen und von diesem genutzt werden.

Der erste Schritt dieses Gentransfers ist der Transport der DNA durch die Zellhülle des Bakteriums. Grundsätzlich besteht die Möglichkeit, dass Biomoleküle passiv durch Poren ins Zellinnere gelangen. Dieser Prozess wird durch die thermische Bewegung ermöglicht, einer Bewegung, die durch ungeordnete Stöße von Molekülen in der Umgebung der DNA erzeugt wird. Allerdings handelt es sich bei der aufgenommenen DNA um ein sehr langes Molekül, das die Länge des Bakteriums um ein Vielfaches übertreffen kann. Ein zufälliger Prozess wie die thermische Bewegung würde dazu führen, dass sich die DNA in der Pore hin und her bewegt, ohne voranzukommen. Um den Transport dennoch zu ermöglichen, benötigt das Bakterium einen Motor.

Wie funktioniert dieser Antrieb? Christof Hepp, Doktorand in der Arbeitsgruppe von Professorin Berenike Maier kann den Mechanismus des Motors nun erklären. Mittels Methoden der Nanotechnologie gelang es, die Aufnahme einzelner DNA-Moleküle in Abhängigkeit von einer angelegten Gegenkraft zu beobachten. Das Ergebnis dieser Messungen stimmt erstaunlich gut mit dem schon seit langem theoretisch vorhergesagten Mechanismus einer sogenannten Translokationsratsche überein: Die bereits beschriebene thermische Bewegung der DNA erfolgt hauptsächlich in eine Richtung, nämlich in die Zelle hinein. Auf der Innenseite binden nun Proteine, die die Bewegung der DNA aus der Zelle heraus blockieren. So wird die Hin- und Her-Bewegung der DNA in ihrer Pore umgewandelt in eine stetige Vorwärtsbewegung, ähnlich wie bei der Ratsche eines Spanngurts. Die Forscher zeigten, dass der DNA-Aufnahme-Motor erstaunlich hohe Kräfte erzeugt und liefern somit erstmals einen sehr klaren experimentellen Hinweis für die Existenz dieses Mechanismus im molekularen Maßstab.

Nach diesem ersten Transportschritt der DNA muss in vielen Bakterien noch ein weiterer erfolgen, da sie über eine zweite Zellmembran verfügen, die von der DNA ebenfalls überwunden werden muss. Der Vergleich mit früheren Arbeiten weist darauf hin, dass ein noch stärkerer Motor für diesen zweiten Schritt verantwortlich ist. Der Mechanismus dieses zweiten Motors wird Gegenstand zukünftiger Forschung sein.

Quelle und Literatur:

http://www.pnas.org/content/early/2016/10/12/1608110113.full

http://www.portal.uni-koeln.de/presse.html

Related Articles

Aktuell

Steviosid: Eine revolutionäre Alternative zu Zucker

Mit seiner Süßkraft, die deutlich stärker ist als die von Zucker, hat Steviosid (ohne jegliche Kalorien) die Welt der Süßstoffe revolutioniert. Mit einer Süßkraft, die...
- Advertisement -

Latest Articles

Digital Detox: Der Weg zu einer besseren Männergesundheit

Die Entscheidung für einen Digital Detox ist ein Schritt hin zu bewussterem Leben und Arbeiten. In unserer heutigen, digital dominierten Welt ist es kaum noch...

Gartenmelde und seine Heilwirkung

Die Gartenmelde kommt in der Volksmedizin mit seiner diuretischen (harntreibenden) Heilwirkung als Brechmittel und als Abführmittel zum Einsatz. Gartenmelde ist ein vielseitiges Kraut in Küche...

Biosimilars in der Therapie der Psoriasis

Vergleich der Wirksamkeit und Sicherheit von Biosimilars mit Original-Biologika für die Behandlung von Psoriasis lässt Fragen offen. Bei der Behandlung von mittelschwerer bis schwerer Psoriasis...